

Deployment of a Robotic Work Platform for Hot Cell Deactivation (ASTD)

Deactivation and Decommissioning Focus Area
FY 2002 Mid-Year Review
March 5-7, 2002
Salt Lake City, UT

GT Berlin
River Corridor Project
Fluor Hanford

Project Goals and Technical Approach

 Project Goals: Enable characterization, decontamination, size reduction, and materials handling tools to be remotely deployed and effectively reach all spaces in 324 Building hot cells and support areas

 Technical Approach: Competitively procure and remotely deploy a robotic work platform that can perform a variety of deactivation tasks in a high dose environment

Maturity of Technology

- Stage 6 Demonstration
 - Completed in 2001
- Stage 7 Deployment
 - Initiated September 2001
 - Completed in January 2002
- SAMM* Manipulators
 - 11 manufactured to date
 - 6 active systems worldwide

* Cybernetix and SAMM are trade names associated with Group Cybernetix of Marseille, France

Relevance to Thrust Areas

- Thrust Area 1 Closure Site Support
 - Supports Hanford's River Corridor Closure Contract (RCCC) Scope
 - Includes 324 Building D&D (per draft RFP)
 - Potential support to Rocky Flats

- Thrust Area 2 Alternatives to High Cost / Risk Baselines
 - Improved capabilities over baseline equipment
 - Cranes and Manipulators
 - Supports up to seven Technology Needs at 324 Building

Hanford Site and 324 Facility Location

324 Building Background

- Previously known as Waste Technology Engineering Laboratory (constructed mid-1960's)
- Houses radiochemical and radiometallurgical hot cells and laboratories
- Supported multiple initiatives for DOE
 - high-level radioactive waste process development (vitrification)
 - destructive analysis of spent nuclear fuel
 - non-radioactive waste treatability studies
- Programmatically transferred from PNNL to Fluor Hanford in 1997 to initiate deactivation

324 Building Radiochemical Engineering Cells (REC)

324 Building Challenges

- Highly contaminated environment
 - primarily Cs-137, Sr-90, traces of Am-241 and Cm-244
 - approximately 70M Curies through B-Cell alone
 - dose rates in B-Cell range from 200 2000 R/hr
- Difficult to reach all areas within cells
- Poor visibility
 - low lighting
 - limited viewing via windows, cameras, mirrors
- Baseline equipment was not designed for D&D work
 - overhead cranes experience significant down time
 - master slave manipulators have limited reach
 - requires multiple / specialized tooling for cranes and manipulators
 - costly planning, design, procurement, fabrication, mockup, training
- Accelerated D&D schedule

324 Building Technology Needs Supported by ASTD Project

Need No.	Title of Hanford STCG Technology Need
RL-DD010	Radiation Hardened Robotics for Building 324
RL-DD05	Characterization of Buildings 324 and 327
RL-DD06	Decontamination of Buildings 324 and 327
RL-DD08	Remote Cutting Technologies for Buildings 324/327
RL-DD09	Tank Remediation for Building 324
RL-DD011	Structural Integrity Inspection – 324/327 Buildings Hot Cell Liners
RL-DD047	Remote Viewing for Hot Cells in Buildings 324 and 327

Other Related Hanford Needs

Need No. RL-DD02	Title of Hanford STCG Technology Need Glovebox Size Reduction System at PFP
RL-MW03	Remotely Controlled Size/Volume Reduction Techniques for RH MLLW and RH TRUW
RL-MW04	Remote Decontamination of RH TRUW Debris to Support
RL-MW016	Reclassification into Non-TRUW Category System to Retrieve RH TRUW from Caissons
RL-WT021	Cleaning, Decontaminating and Upgrading Hanford Pits
RL-DD034	Remote/Robotic Technologies for CDI
RL-DD048	Volume Reduction of Equipment for CDI

Other Sites' STCG Needs

Title of STCG Technology Need

Need No.

SR00-4001

AL-00-01-DD	Size Reduction Technology for TRU Mixed Waste
ID-7.2.08	Robotics for D&D
OH-WV-910	Size Reduction of Components
ORDD-06	Improved Remote Decontamination Methods
ORDD-07	Remote Dismantlement Methods
RF-DD11	Improved Size Reduction of Contaminated Equipment and Demolition Waste
SR00-1012	Capability for Remote Handled Size Reduction of TRU Mixed and Non-Mixed Waste

Structures

Dismantlement of Large and/or Complex Equipment and

Progress / Significant Accomplishments

•	 Procurement Awarded Contract Completed System Fabrication Assembly and FAT (including UL Certification) Received System and Completed SAT 	02-00 02-01 03-01
•	Pre-Deployment - Initiated Training of Ops and Support Staff - Completed Qualification of Operators	03-01 07-01
•	 Deployment Initiated Deployment for Pipe Trench Cleanout Completed Pipe Trench Scope Deployment Fact Sheet (02/02) Cost and Performance Report (due 3/02) 	09-01 01-02

Robotic System Receipt and Assembly in Hanford's 306-E Facility (3/01)

Hanford Site Acceptance Testing and Qualifications Training (3/01 – 7/01)

Configuration and Tooling Options

- Impact Wrenches
- Hydraulic Shears
- Grippers
- Circular and Reciprocating Saws
- Video Cameras / Lighting
- NDE Tools
- Pipe Cutters
- Plasma Arc Torch
- Decontamination Equipment
- Mechanical Grinders
- Scrapers / Shovels
- Others

Benefits to Baseline

- Full reach capability to nearly all surfaces in hot cells
- Improved dexterity
- Greater payload than master slave manipulators
- Fewer custom-designed tools needed
- Reduced crane and MSM dependency/failures/repairs
- Efficiency gains for troubleshooting and repair of cranes
- Increased visual capability / control
- Dose reduction to workers (ALARA)
 - reduced need for airlock entries
- Cost Savings / Avoidance
 - estimated at over \$3M for 324 Building hot cells and supporting areas

Deployment in 324 Building Pipe Trench

Scope

 Remove process piping, drip trays, block nozzles, pipe jumpers and other items, as necessary, to access and remove sediment-like residue from the bottom of the Pipe Trench

Challenges

- Low confidence in actual configuration of Pipe Trench internals
- High dose (no manned entries while coverblocks removed)
- Tight schedule (October 2001 to early January 2002)
 - REC needed by January 10 for SNF removal project

HANFORD

Plan View -- 324 Building Radiochemical Engineering Cells (REC)

Initial Deployment of Robotic System

Initial Deployment of Robotic System

Deployment Results

- Results / Accomplishments
 - System found to be fully capable of all tasks needed (heavy duty to delicate)
 - Tight schedule could not have been met without the Cybernetix system
 - All baseline scope completed (including waste packaging and shipment)
- Lessons Learned
 - Selected and dedicated operations staff was key to success
 - 2-3 months of training was reasonable for system
 - Actual conditions more challenging than mock-up
 - Variability in pipe hardness, piping congestion, audio feedback
 - Additional camera coverage always useful
 - Hydraulic leak near axis #3 (upcoming repair)

Status of Scope, Schedule and Cost

Scope and Schedule

- TTP Milestone 5, Complete Installation of Robotic Work Platform in 324 for Deactivation Activities (due 09/30/02, completed 09/27/02)
- TTP Deliverables: Deployment Fact Sheet (completed), Cost and Performance Report (in process)

Cost

- Jointly Funded EM40 / EM50
- EM50 Budget of \$1,545K
 - FY01 C/O = \$862 (remaining funds deobligated)

Community / Stakeholder Activities

- Weekly
 - River Corridor Project Weekly Report (internal to Fluor Hanford)
 - River Corridor Project Project Status Meeting with DOE-RL
- Monthly
 - Fluor Hanford's "Technology Management" Report
- Other
 - STCG Briefings
 - Lessons Learned Sharing with TFA / Robotics Crosscutting Staff
 - Local Newspapers (e.g., Hanford REACH, Tri-City Herald)
 - Presentation to WA-Ecology on 324 Building Robotics
 - Hanford SAFETY EXPO (upcoming, April 30 May 2, 2002)

Points of Contact

Kurt Lenkersdorfer, Project Engineer River Corridor Project Fluor Hanford (509) 373-5182

Greg Berlin, Technology Program Manager River Corridor Project Fluor Hanford (509) 376-2389

Ron Staubly, Project Manager D&D Focus Area DOE-NETL (304) 285-4403

Roger Pressentin, Project Manager Nuc. Materials and Facility Stab. DOE-RL (509) 376-1291

Kimberly Williams, Project Manager Science and Technology Programs DOE-RL (509) 372-4829